1. C4.5: Decision Trees
(ID3 and pruning methods)
2. K-Means
/ Spectral Clustering (taken)
3. SVM
4. APriori
5. Expectation
Maximization (EM)
6. PageRank / HITS 7. AdaBoost
8. K Nearest Neighbours (kNN)
9. Naive Bayes/Chow-Liu Tree Model
10. CART
J. Ross Quinlan: Induction of Decision Trees. Machine
Learning 1(1): 81-106 (1986)http://www.cs.toronto.edu/~roweis/csc2515-2006/readings/quinlan.pdf
J. Ross Quinlan: Simplifying Decision Trees.
International Journal of Man-Machine Studies 27(3):
221-234 (1987)
http://citeseer.ist.psu.edu/525260.html
Andrew Y.
Ng, Michael I. Jordan, and Yair Weiss. On spectral
clustering: Analysis and an algorithm. In Advances in
Neural Information Processing Systems 14, 2002.
http://robotics.stanford.edu/~ang/papers/nips01-spectral.ps
D. Arthur, S. Vassilvitskii. k-means++ The
Advantages of Careful Seeding. Symposium on Discrete
Algorithms (SODA), 2007.
http://www.stanford.edu/~sergeiv/papers/kMeansPP-soda.pdf
Duda et al. Wiley Interscience, 2.ed, 2000.
Section 10.4.3.
Thorsten Joachims, "Training Linear SVMs in Linear
Time", KDD 2006, August 20-23, 2006, Philadelphia,
Pennsylvania, USA.> http://www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf
Haykin, Simon. Neural Networks: A Comprehensive
Foundation, 2.ed. Prentice-Hall, 1999. Chapter 6.
Christopher Burges, "A Tutorial on Support
Vector Machines for Pattern Recognition", Data Mining
and Knowledge Discovery, Vol. 2. (1998), pp. 121-167,
1998. http://www.public.asu.edu/~jye02/CLASSES/Spring-2007/Papers/PAPERS/SVM-tutorial.pdf
Agrawal R, Srikant R. "Fast Algorithms for Mining
Association Rules", VLDB. Sep 12-15 1994, Chile,
487-99. http://www.acm.org/sigmod/vldb/conf/1994/P487.PDF
Hand, Mannila and Smyth. Principles of Data
Mining. MIT, 2000. Section 5.3.2.
Jeff
A. Bilmes. "A Gentle Tutorial of the EM Algorithm and
its Application to Parameter Estimation for Gaussian
Mixture and Hidden Markov Models", International
Compute Science Institute, 1998. http://scipp.ucsc.edu/groups/retina/articles/bilmes98gentle.pdf
Discussion of sections 1-3 is sufficient.
Russel and Norvig. Artificial Intelligence: A
Modern Approach, 2.ed. Prentice-Hall, 2003. Section
20.3.
Duda et al. Wiley Interscience, 2.ed, 2000.
Sections 3.9.
Hand, Mannila and Smyth. Principles of Data
Mining. MIT, 2000. Section 8.4.
Kleinberg, J. M.
1998. Authoritative sources in a hyperlinked
environment. In Proceedings of the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms (San
Francisco, California, United States, January 25 - 27,
1998). Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA,
668-677.http://www.cs.cornell.edu/home/kleinber/auth.pdf
Corso,
Gullí and Romani. Fast PageRank Computation via a
Sparse Linear System (Extended Abstract).
http://citeseer.ist.psu.edu/719287.html
A Short Introduction to Boosting Introduction to Adaboost
by Freund and Schapire from 1999.http://www.site.uottawa.ca/~stan/csi5387/boost-tut-ppr.pdf
Duda et al. Wiley Interscience, 2.ed, 2000. Sections 9.5.2.
Hastie, T. and Tibshirani, R. 1996. Discriminant
Adaptive Nearest Neighbor Classification. IEEE Trans.
Pattern Anal. Mach. Intell. (TPAMI). 18, 6 (Jun. 1996),
607-616. http://dx.doi.org/10.1109/34.506411
Duda et al. Wiley Interscience, 2.ed, 2000.
Sections 4.4 - 4.6.
Hand, Mannila and Smyth. Principles of Data
Mining. MIT, 2000. Section 10.6.
Chow C , Liu C, Approximating discrete probability
distributions with dependence trees, Information
Theory, IEEE Transactions on, Vol. 14, No. 3. (1968),
pp. 462-467.http://ieeexplore.ieee.org/iel5/18/22639/01054142.pdf
H. Zhang, "The optimality of naive Bayes,"
presented at 17th International FLAIRS conference,
Miami Beach, May 17-19, 2004. http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf
Hand, Mannila and Smyth. Principles of Data
Mining. MIT, 2000. Section 10.8.